472 research outputs found

    Preface to the Special Issue: Strategic Opportunities for Fusion Energy

    Get PDF
    The Journal of Fusion Energy provides a forum for discussion of broader policy and planning issues that play a crucial role in energy fusion programs. In keeping with this purpose and in response to several recent strategic planning efforts worldwide, this Special Issue on Strategic Opportunities was launched with the goal to invite fusion scientists and engineers to record viewpoints of the scientific opportunities and policy issues that can drive continued advancements in fusion energy research

    Synergistic cross-scale coupling of turbulence in a tokamak plasma

    Get PDF
    For the first time, nonlinear gyrokinetic simulations spanning both the ion and electron spatio-temporal scales have been performed with realistic electron mass ratio ((m[subscript D] [over m [subscript e])[superscript 1 over 2] = 60.0), realistic geometry, and all experimental inputs, demonstrating the coexistence and synergy of ion (k[subscript θρs] ~O(1.0)) and electron-scale (k[subscript θρe] ~O(1.0)) turbulence in the core of a tokamak plasma. All multi-scale simulations utilized the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] to study the coupling of ion and electron-scale turbulence in the core (r/a = 0.6) of an Alcator C-Mod L-mode discharge shown previously to exhibit an under-prediction of the electron heat flux when using simulations only including ion-scale turbulence. Electron-scale turbulence is found to play a dominant role in setting the electron heat flux level and radially elongated (k[subscript r] ≪ k[subscript θ]) “streamers” are found to coexist with ion-scale eddies in experimental plasma conditions. Inclusion of electron-scale turbulence in these simulations is found to increase both ion and electron heat flux levels by enhancing the transport at the ion-scale while also driving electron heat flux at sub-ρ[subscript i] scales. The combined increases in the low and high-k driven electron heat flux may explain previously observed discrepancies between simulated and experimental electron heat fluxes and indicates a complex interaction of short and long wavelength turbulence.United States. Dept. of Energy. Office of Science (Contract DE-AC02-05CH11231)United States. Dept. of Energy (Contract DE-FC02-99ER54512-CMOD)United States. Dept. of Energy. Fusion Energy Postdoctoral Research Program (Oak Ridge Institute for Science and Education

    Impurity transport, turbulence transitions and intrinsic rotation in Alcator C-Mod plasmas

    Get PDF
    Linear and nonlinear gyrokinetic simulations are used to probe turbulent impurity transport in intrinsically rotating tokamak plasmas. For this simulation-based study, experimental input parameters are taken from a pair of ICRF heated Alcator C-Mod discharges exhibiting a change in the sign of the normalized toroidal rotation gradient at mid-radius (i.e. a change from hollow to peaked intrinsic rotation profiles). The simulations show that there is no change in the peaking of the calcium impurity between the plasmas with peaked and hollow rotation profiles, suggesting that the impurity transport and the shape of the rotation do not always change together. Furthermore, near mid-radius, r/a = 0.5 (normalized midplane minor radius), the linear and nonlinear gyrokinetic simulations exhibit no evidence of a transition from ion temperature gradient (ITG) to trapped electron mode dominance when the intrinsic rotation profile changes from peaked to hollow. Extensive nonlinear sensitivity analysis is performed, and there is no change in the ITG critical gradient or in the stiffness of ion heat transport with the change in the intrinsic toroidal rotation profile shape, which suggests that the shape of the rotation profile is not dominated by the ITG onset in these cases.United States. Department of Energy (contract DE-FC02-99ER54512-CMOD)United States. Department of Energy (Fusion Energy Postdoctoral Research Program

    Multi-scale gyrokinetic simulations: Comparison with experiment and implications for predicting turbulence and transport

    Get PDF
    To better understand the role of cross-scale coupling in experimental conditions, a series of multi-scale gyrokinetic simulations were performed on Alcator C-Mod, L-mode plasmas. These simulations, performed using all experimental inputs and realistic ion to electron mass ratio ((mi/me)1∕2 = 60.0), simultaneously capture turbulence at the ion (kθρs∼(1.0)) and electron-scales (kθρe∼(1.0)). Direct comparison with experimental heat fluxes and electron profile stiffness indicates that Electron Temperature Gradient (ETG) streamers and strong cross-scale turbulence coupling likely exist in both of the experimental conditions studied. The coupling between ion and electron-scales exists in the form of energy cascades, modification of zonal flow dynamics, and the effective shearing of ETG turbulence by long wavelength, Ion Temperature Gradient (ITG) turbulence. The tightly coupled nature of ITG and ETG turbulence in these realistic plasma conditions is shown to have significant implications for the interpretation of experimental transport and fluctuations. Initial attempts are made to develop a “rule of thumb” based on linear physics, to help predict when cross-scale coupling plays an important role and to inform future modeling of experimental discharges. The details of the simulations, comparisons with experimental measurements, and implications for both modeling and experimental interpretation are discussed.United States. Department of Energy (DE-AC02-05CH11231)United States. Department of Energy (DE-FC02-99ER54512-CMOD)United States. Department of Energy (DE-SC0006957)United States. Department of Energy (DE-FG02-06ER54871

    Quantification of Ophthalmic Changes After Long-Duration Spaceflight, and Subsequent Recovery

    Get PDF
    A subset of crewmembers are subjected to ophthalmic structure changes due to long-duration spaceflight (>6 months). Crewmembers who experience these changes are described as having Spaceflight Associated Neuro-Ocular Syndrome (SANS). Characteristics of SANS include optic disk edema, cotton wool spots, choroidal folds, refractive error, and posterior globe flattening. SANS remains a major obstacle to deep-space and planetary missions, requiring a better understanding of its etiology. Quantification of ocular, structural changes will improve our understanding of SANS pathophysiology. Methods were developed to quantify 3D optic nerve (ON) and ON sheath (ONS) geometries, ON tortuosity, and posterior globe deformation using MR imaging

    Smaller & Sooner: Exploiting High Magnetic Fields from New Superconductors for a More Attractive Fusion Energy Development Path

    Get PDF
    The current fusion energy development path, based on large volume moderate magnetic B field devices is proving to be slow and expensive. A modest development effort in exploiting new superconductor magnet technology development, and accompanying plasma physics research at high-B, could open up a viable and attractive path for fusion energy development. This path would feature smaller volume, fusion capable devices that could be built more quickly than low-to-moderate field designs based on conventional superconductors. Fusion’s worldwide development could be accelerated by using several small, flexible devices rather than relying solely on a single, very large device. These would be used to obtain the acknowledged science and technology knowledge necessary for fusion energy beyond achievement of high gain. Such a scenario would also permit the testing of multiple confinement configurations while distributing technical and scientific risk among smaller devices. Higher field and small size also allows operation away from well-known operational limits for plasma pressure, density and current. The advantages of this path have been long recognized—earlier US plans for burning plasma experiments (compact ignition tokamak, burning plasma experiment, fusion ignition research experiment) featured compact high-field designs, but these were necessarily pulsed due to the use of copper coils. Underpinning this new approach is the recent industrial maturity of high-temperature, high-field superconductor tapes that would offer a truly “game changing” opportunity for magnetic fusion when developed into large-scale coils. The superconductor tape form and higher operating temperatures also open up the possibility of demountable superconducting magnets in a fusion system, providing a modularity that vastly improves simplicity in the construction, maintenance, and upgrade of the coils and the internal nuclear engineering components required for fusion’s development. Our conclusion is that while tradeoffs exist in design choices, for example coil, cost and stress limits versus size, the potential physics and technology advantages of high-field superconductors are attractive and they should be vigorously pursued for magnetic fusion’s development

    Explaining Cold-Pulse Dynamics in Tokamak Plasmas Using Local Turbulent Transport Models

    Get PDF
    A long-standing enigma in plasma transport has been resolved by modeling of cold-pulse experiments conducted on the Alcator C-Mod tokamak. Controlled edge cooling of fusion plasmas triggers core electron heating on time scales faster than an energy confinement time, which has long been interpreted as strong evidence of nonlocal transport. This Letter shows that the steady-state profiles, the cold-pulse rise time, and disappearance at higher density as measured in these experiments are successfully captured by a recent local quasilinear turbulent transport model, demonstrating that the existence of nonlocal transport phenomena is not necessary for explaining the behavior and time scales of cold-pulse experiments in tokamak plasmas.United States. Department of Energy (Award DE-FC02-99ER54512)United States. Department of Energy (Grant DESC0014264

    Improved profile fitting and quantification of uncertainty in experimental measurements of impurity transport coefficients using Gaussian process regression

    Get PDF
    The need to fit smooth temperature and density profiles to discrete observations is ubiquitous in plasma physics, but the prevailing techniques for this have many shortcomings that cast doubt on the statistical validity of the results. This issue is amplified in the context of validation of gyrokinetic transport models (Holland et al 2009 Phys. Plasmas 16 052301), where the strong sensitivity of the code outputs to input gradients means that inadequacies in the profile fitting technique can easily lead to an incorrect assessment of the degree of agreement with experimental measurements. In order to rectify the shortcomings of standard approaches to profile fitting, we have applied Gaussian process regression (GPR), a powerful non-parametric regression technique, to analyse an Alcator C-Mod L-mode discharge used for past gyrokinetic validation work (Howard et al 2012 Nucl. Fusion 52 063002). We show that the GPR techniques can reproduce the previous results while delivering more statistically rigorous fits and uncertainty estimates for both the value and the gradient of plasma profiles with an improved level of automation. We also discuss how the use of GPR can allow for dramatic increases in the rate of convergence of uncertainty propagation for any code that takes experimental profiles as inputs. The new GPR techniques for profile fitting and uncertainty propagation are quite useful and general, and we describe the steps to implementation in detail in this paper. These techniques have the potential to substantially improve the quality of uncertainty estimates on profile fits and the rate of convergence of uncertainty propagation, making them of great interest for wider use in fusion experiments and modelling efforts.United States. Dept. of Energy. Office of Fusion Energy Sciences (Award DE-FC02-99ER54512)United States. Dept. of Energy. Office of Science (Contract DE-AC05-06OR23177)United States. Dept. of Energy. Office of Advanced Scientific Computing Research (Award DE-SC0007099

    Implicit learning of affective responses in dementia patients: a face-emotion-association paradigm

    Full text link
    The aim of the present study was to develop and evaluate an ecologically valid approach to assess implicit learning of affective responses in dementia patients. We designed a Face-Emotion-Association paradigm (FEA) that allows to quantify the influence of stimuli with positive and negative valence on affective responses. Two pictures of neutral male faces are rated on the dimensions of valence and arousal before and after aversive versus pleasant fictitious biographical information is paired with each of the pictures. At the second measurement time point, memory for pictures and biographical content is tested. The FEA was tested in 21 patients with dementia and 13 healthy controls. Despite severely impaired explicit memory, patients changed valence and arousal ratings according to the biographical content and did not differ in their ratings from the control group. The results demonstrate that our FEA paradigm is a valid instrument to investigate learning of affective responses in dementia patients
    corecore